
Katharina Sick
Cloud Native Linz | March 28, 2023

Crossplane

& GitOps
A perfect match?



Hello, I'm

Katharina

Software Engineer
@Dynatrace

Get in touch
https://www.ksick.dev

https://www.ksick.dev/


Some basics about GitOps

and Infrastructure as Code
What are they? Why is the combination of
Crossplane and GitOps so powerful?

Our story
How did we unlock those technologies in

our team?

Our learnings

What would we do differently now and

what are we going to change?

About today
Let's take a look at the questions
I'll try to answer in this talk



An operational framework for the
continuous deployment of
applications and infrastructure

Wait, what's
GitOps?



The state of the system is described in a declarative way
In practice: Kubernetes manifests

The desired state is stored in a system with version control, immutability, and auditing
In practice: Git

The configuration is automatically pulled and applied to the target system
In practice: ArgoCD, Flux, Kubevela,...

Software agents continuously monitor the system to ensure that no drift happens
In practice: ArgoCD, Flux, Kubevela,...

Declarative configuration

Versioned and immutable

Pulled automatically

Continuously reconciled

Principles



Traditional Deployment

Build & Push ImageDeveloper

Git repository

Pushes Code

Container registry

Kubernetes cluster

kubectl apply

CI



Container registry

Developer

Build & push image

Git repository

Pushes code

CI

GitOps Deployment



Dependency

updater

Container registry

Developer

Build & push image

Git repository (CD)

Git repository

Pushes code

CI

GitOps Deployment



Dependency

updater

Container registry

Developer

Build & push image

Git repository (CD)

Git repository

Pushes code

CI

GitOps tool

Monitors repository

GitOps Deployment



Dependency

updater

Container registry

Developer

Build & push image

Git repository (CD)

Kubernetes cluster

Git repository

Pushes code

CI

GitOps tool

Monitors repository

Applies config

GitOps Deployment



Main Benefits
The repository reliably shows the deployed resources
No configuration drift

Easily deploy with a git commit
Rollback by reverting a git commit

By incorporating software development best practices for deployments

No direct access to Kubernetes clusters
Four eyes principle (pull requests)
Version information including who deployed and why

Single source of truth

Faster deployments and rollbacks

Better collaboration

Security and Compliance



Demo Time

Simple deployment with

ArgoCD

Let's deploy a simple application with

GitOps



Let's take a brief look at
Crossplane and Infrastructure as
Code

And 

Crossplane?



No need for developers to manually provision and manage servers, operating

systems, database connections, storage, and other infrastructure

Declarative: What should be applied?
Imperative: Which steps should be taken to apply the infrastructure?

Version control
Increase deployment speed
Consistency

Manage infrastructure through code 

Declarative or imperative 

Many benefits

Infrastrucuture as Code



Terraform
The desired state is described with the Hashicorp

Configuration Language (*.hcl)

Platform agnostic
Using providers enables us to deploy to any target

system

Terraform has a very large open source community

terraform apply

Declarative configuration 

Multiple environments

Large community

Apply with Terraform CLI



Crossplane
Allows to extend a Kubernetes cluster to provision,

manage and orchestrate infrastructure and services

The desired state is described in a declarative way

through Kubernetes manifests

Platform agnostic
Using providers enables us to deploy to any target

system

kubectl apply -f bucket.yaml

Cloud Native control plane

Declarative configuration 

Multiple environments

Apply with kubectl



Demo Time

Deploy a bucket with

Terraform and Crossplane

Let's compare those two tools



Taking the next step
Native Kubernetes manifests (or Helm charts) for applications
Crossplane resources for infrastructure

Your GitOps tool is just another Kubernetes controller
You can still use your standard tools like Helm, Kustomize, and many others

Crossplane is managing resources and their lifecycle
The GitOps tool makes sure to keep everything in sync

You can deploy any Kubernetes manifest with GitOps

Works with your Kubernetes toolset

 

Benefit from GitOps for infrastructure as well



With Crossplane, you can

benefit from GitOps for

infrastructure as well



Demo Time

Infrastructure deployment

with ArgoCD and Crossplane

Use GitOps to deploy an application

with some infrastructure



Learn how our team is using
GitOps and Infrastructure as Code

In practice



Our main topics
We're providing various services, infrastructure, and frameworks to increase developer productivity in our company

We're running around 40 Jenkins instances with additional infrastructure

We're currently establishing Backstage as an internal developer portal
Enabling teams to create templates to scaffold new projects easily

Test frameworks, automatic issue generation, pipeline monitoring and statistics, test infrastructure, ...

Engineering Productivity

CI Infrastructure

Backstage

Other



CI Infrastructure
Owned by the developers that are using it
We're providing updates and common functionalities

Renovate Bot, Dynatrace Dashboard, and one or more dedicated Vault engines
Optional Gradle Cache or Sonarqube

CI and Test Infrastructure
CI applications and tools (for example Backstage)

It takes around an hour to provision the CI Infrastructure for a new team/topic
We are aiming to reduce this time by improving our templates

Jenkins instances

Additional tooling

Dedicated Kubernetes cluster

Easy setup via templating



CI Environment: Cluster
ci-infrastructure



team-a-prod

Jenkins

Renovate Bot

Sonarqube

Gradle Cache

team-a-stg

Jenkins

Jenkins

Jenkins



What have we learned? 
What would we solve differently now?

Our

Experiences



Start small
E.g. databases, caches, node groups, certificates,...

Too much complexity as a first task
Frustration because resource inputs and outputs didn't match

Not everything has to be perfect from the beginning on
We are now revisiting creating a cluster with a lot more knowledge and confidence

Start with small components to get to know Crossplane

We attempted to create a production-ready EKS cluster to get started

Don't stop reiterating



The chicken-egg problem
We initialized our cluster with Terraform
Could be solved by spinning up a local cluster in a script or CI build and letting the cluster manage itself

You need a Kubernetes cluster to use Crossplane 



ci-infrastructure-cluster
Git repository

The chicken-egg problem
We initialized our cluster with Terraform
Could be solved by spinning up a local cluster in a script or CI build and letting the cluster manage itself

You need a Kubernetes cluster to use Crossplane 

Temporary

local (e.g.kind)
Kubernetes cluster

GitOps tool

Crossplane



ci-infrastructure-cluster
Git repository

The chicken-egg problem
We initialized our cluster with Terraform
Could be solved by spinning up a local cluster in a script or CI build and letting the cluster manage itself

You need a Kubernetes cluster to use Crossplane 

Production

ci-infrastructure
Kubernetes cluster

GitOps tool

Crossplane

reads

applies

Temporary

local (e.g.kind)
Kubernetes cluster

GitOps tool

Crossplane



ci-infrastructure-cluster
Git repository

The chicken-egg problem
We initialized our cluster with Terraform
Could be solved by spinning up a local cluster in a script or CI build and letting the cluster manage itself

You need a Kubernetes cluster to use Crossplane 

Production

ci-infrastructure
Kubernetes cluster

GitOps tool

Crossplane

Temporary

local (e.g.kind)
Kubernetes cluster

GitOps tool

Crossplane

reads reads

applies

applies



ci-infrastructure-cluster
Git repository

The chicken-egg problem
We initialized our cluster with Terraform
Could be solved by spinning up a local cluster in a script or CI build and letting the cluster manage itself

You need a Kubernetes cluster to use Crossplane 

Production

ci-infrastructure
Kubernetes cluster

GitOps tool

Crossplane

reads

applies



Sync vs maintenance windows
Avoid confusion
Can be achieved with sync windows

Works out of the box in ArgoCD
Needs some workarounds to work in Flux

Don't use the maintenance windows of your cloud provider



Use compositions for everything
That makes things like role-based access control a

lot harder
Only composite resources are namespace scoped
Upbound/Crossplane recommends to always

compositions

Setting up a KMS key encryption for certain

resources doesn't work without creating a

composition as you need patches for this

Managed resources are cluster scoped

Many resources need patches anyways



Enforce certain rules
Use multiple provider configurations
No need for one huge service account
Each has a different service account

Explicitely allow or block resources that can be applied in certain projects

Guard your Kubernetes clusters with policies (e.g. with Kyverno)
E.g. restrict provider config usage

Follow the principle of least privilege

ArgoCD project permissions

Cluster Policies



How to package applications?
We always try to keep our Helm charts fully self-contained
Can we assume the necessary composite resource definitions are present in the target cluster, or should we include
them in the package?

The Kubernetes Crossplane provider allows to include of standard Kubernetes resources to Compositions
Using the Kubernetes Crossplane provider feels wrong

How to build Helm charts with Crossplane?

Or should we get rid of Helm?



Are we beta testers?
E.g. the 'id' output needs to be set to the 'arn' input
E.g. necessary secret input is not written to output secret

Required inputs are not marked as required in the documentation quite often
[crossplane-contrib/provider-aws]: The resource was not updatable because of an undocumented TODO

E.g. ElastiCache:
Can't create a user when a password is given
Does not write credentials to secret reference

[AWS] Inconsistent in- & outputs of managed resources

[AWS] Documentation lacks important information

[AWS] Many small bugs



Reading logs and errors
[AWS] The resource condition does not always represent the actual condition
Events show details about problems

You can read the logs of Crossplane and its providers by reading the pod logs of the corresponding pod

Rely on events for errors

Reading logs



Hello again, Terraform
Don't be surprised to see Terraform log messages when increasing log verbosity
Once we couldn't delete a resource because 'prevent_destroy' was set
Documentation is also based on Terraform -> sometimes examples won't work

Many providers are generated from Terraform



To sum it up
There are many minor issues
Updates of resources sometimes don't happen

We love that we can use the GitOps workflow for everything with Crossplane
We still need to gather much knowledge, but we will definitely continue using Crossplane﻿

It is hard for us to trust Crossplane fully

Crossplane opens awesome opportunities



Thank you! :) 



Resources
Live demos/examples:

https://github.com/KatharinaSick/PresentationMateri

als/tree/main/20230328-CloudNativeLinz

OpenGitOps: https://opengitops.dev/
General information:

https://about.gitlab.com/topics/gitops/
https://www.redhat.com/en/topics/automation
https://www.redhat.com/en/topics/automation/

what-is-infrastructure-as-code-iac
https://learn.microsoft.com/en-

us/devops/deliver/what-is-infrastructure-as-

code

Flux sync windows:

https://github.com/fluxcd/flux2/discussions/870

ArgoCD: https://argo-cd.readthedocs.io/
Flux CD: https://fluxcd.io/
Kubevela: https://kubevela.io/
Terraform: https://www.terraform.io/
Crossplane: https://www.crossplane.io/
Renovate Bot: https://docs.renovatebot.com/
Helm: https://helm.sh/
Crossplane Kubernetes Provider:

https://github.com/crossplane-contrib/provider-

kubernetes
Backstage: https://backstage.io/
Kyverno: https://kyverno.io/
OSS Insights: https://ossinsight.io/
Showcode: https://www.showcode.io/

https://github.com/KatharinaSick/PresentationMaterials/tree/main/20230328-CloudNativeLinz
https://github.com/KatharinaSick/PresentationMaterials/tree/main/20230328-CloudNativeLinz
https://opengitops.dev/
https://about.gitlab.com/topics/gitops/
https://www.redhat.com/en/topics/automation
https://www.redhat.com/en/topics/automation/what-is-infrastructure-as-code-iac
https://www.redhat.com/en/topics/automation/what-is-infrastructure-as-code-iac
https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://learn.microsoft.com/en-us/devops/deliver/what-is-infrastructure-as-code
https://github.com/fluxcd/flux2/discussions/870
https://argo-cd.readthedocs.io/
https://fluxcd.io/
https://kubevela.io/
https://www.terraform.io/
https://www.crossplane.io/
https://docs.renovatebot.com/
https://helm.sh/
https://github.com/crossplane-contrib/provider-kubernetes
https://github.com/crossplane-contrib/provider-kubernetes
https://backstage.io/
https://kyverno.io/
https://ossinsight.io/
https://www.showcode.io/

