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Who am | you might ask

e David Hondl

e Cloud Engineer @ XXXLdigital

e Things | care about
o Coding / DevOps practises / CNCF
o Music and mountains
o All the standard stuff
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Kubernetes as a
universal controlplane

An Introduction into Crossplane



What and why is

Kubernetes



kubectl

containersl! YAML!

cloud hosted CNCF

deploy apps service mesh

so scalable
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The main use case

e Schedules and manages containers at scale
e Auto-heal and scale

e Expose deployment

e Desired state is applied

e kubectl
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Sut it Is MORE than that

Interesting K8s patterns | want to talk about
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Resources and Reconciliation .@

e (Can be modified by user (CRUD)

e Stored in etcd

e Desired state is enforced by Kubernetes
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apiVersion: apps/vi
kind: Deployment
metadata:
name: nginx-deployment
labels:
app: nginx
spec:
replicas: 3
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.14.2
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Custom Resources and Operator pattern &

e Custom Resources extend Kubernetes
e Defined by CustomResourceDefinition
e \Watched by controller

e CRDs + Controller = Operator

e |[stio, MongoDB, Dynatrace
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apiVersion: networking.istio.io/vlbetal
kind: VirtualService
metadata:
name: reviews-route
spec:
hosts:
- example.prod.svc.cluster.local
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Focus on collaboration

e Declarative, optionally revisioned in Git
o enables GitOps

e RESTful CRUD operations

e Multi-persona collaboration using APl Groups in Kubernetes
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Object / APl access depends on user group
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apiVersion: apps/vi

kind: Deployment

metadata:
name: nginx-deployment
labels:
app: nginx
spec:
replicas: 3
selector:
matchlLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:

- containerPort: 80
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Ingredient #2

infrastructure as code



What is it?
e Automate third party provisioning via applicable configurations

e It goes as follows:

Define your needs as config
Put them in a repository
Apply them via laC tool

27?7

Profit

o O O O O

e |aC tools talk to all platforms for you in a uniform way
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terraform
required_providers {

aws = {
source = "hashicorp/aws"
version = "~> 4.16"
b
b
required_version = ">= 1.2.0"
oo
grouping
provider |"aws" {
region = "us-west-2"
}

part of provider

resource ["aws_instance" "app_server" {

instance_type = "t2.micro"
tags = {
Name = "ExampleAppServerInstance”
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What makes it superior to us puny humans?

e Repeatability
e Consistency

e Transparency
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Observations on current laC tools

e Template approach
o Sequential / Synchronous provisioning
o Access depends on who executes it
o Modeling team boundaries - who owns what

e Monolithic state

o Drift management - keeping the state in sync with your config
o State lock

e Yet another language / tool

e Thus —Infrastructure-silo OpsPerson
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With this in mind...

state managements

Writ tors| collaborative

Infrastructure as code rite operators: .
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We can create this
for infra concerns!
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Surprise announcement!

*J Crossplane



7, Crossplane

e Open source
e Control plane framework
e Built on top of Kubernetes (principles)

e [t actually doesn’t start with a K
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Crossplane provider strategy

2023

Providers are separately maintained
Open source

Can be shared via market place

Can be generated via Upjet

Still a lot of work to do



SHOWTIME

Core & providers



Crossplane resources

e Install new resources via providers
e Create recipes from managed resources
e XRDs build on the concept of CRDs

e Composition pattern
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Actually you are an

APl designer



Object / APl access depends on user group
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SHOWTIME

XRDs



How can this help us with

Overcoming limitations



S
- API -
A clear API - 11

e \Who loves YAML?? *crowd cheers*
e Talk to a well defined (Kubernetes) API

e Semantic versioning and a rollout strategy
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Continuous reconciliation

e Instead of synchronous provisioning
o The same as other K8s resources

e It replaces YOU (as reconciliation loop)

e Decouple and break monolithic representation
o Avoid configuration drift

e There always will be dependencies, model them correctly
o E.g.K8s labels
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Clear access control

e Third party access
o Providers / controllers handle access secret
o  Multiple ProviderConfigs possible

e User access

o Via Kubernetes API
o RBAC all the way
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Concept of self-service

e EXxpose specific claims to groups of people
e Underlying resources with separate state are abstracted

e Provisioning without supervision / manual interference
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Apply ALL the things



Thank you for listening!



