Hi!l ;)

Who am | you might ask

e David Hondl

e Cloud Engineer @ XXXLdigital

e Things | care about
o Coding / DevOps practises / CNCF
o Music and mountains
o All the standard stuff

2023

Kubernetes as a
universal controlplane

An Introduction into Crossplane

What and why is

Kubernetes

kubectl

containersl! YAML!

cloud hosted CNCF

deploy apps service mesh

so scalable

2023

The main use case

e Schedules and manages containers at scale
e Auto-heal and scale

e Expose deployment

e Desired state is applied

e kubectl

2023

Sut it Is MORE than that

Interesting K8s patterns | want to talk about

2023

Kubernetes architecture

Master Node

API Server

Worker Node

Kubelet

Worker Node

Controllers

Kubelet

Kube-proxy

Scheduler

etcd

&)
&)

Kube-proxy

o
o

Resources and Reconciliation .@

e (Can be modified by user (CRUD)

e Stored in etcd

e Desired state is enforced by Kubernetes

2023

apiVersion: apps/vi
kind: Deployment
metadata:
name: nginx-deployment
labels:
app: nginx
spec:
replicas: 3
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.14.2

2023

2023

()

b

4

~
a

kubectl -f apply
coolDeployment.yaml

Y

Deployment

N

Pod

Pod

1.
2.
3.

Observe
Analyze
React

o)

Custom Resources and Operator pattern &

e Custom Resources extend Kubernetes
e Defined by CustomResourceDefinition
e \Watched by controller

e CRDs + Controller = Operator

e |[stio, MongoDB, Dynatrace

2023

apiVersion: networking.istio.io/vlbetal
kind: VirtualService
metadata:
name: reviews-route
spec:
hosts:
- example.prod.svc.cluster.local

2023

£
‘A

2023

kubectl -f apply

Custom

A myResource.yaml

Resource

A

track

events

Y

Controller

/N
r_/

adjust

5

_| managed by

| controller

Focus on collaboration

e Declarative, optionally revisioned in Git
o enables GitOps

e RESTful CRUD operations

e Multi-persona collaboration using APl Groups in Kubernetes

2023

Object / APl access depends on user group

A‘h
A' e

App Developers \

gy

App Operators

qn.
A' s

\
/

e

Master Node

N/

API Server

Worker Node

Kublet

Worker Node

Controllers

Kublet

Kube-proxy

Scheduler

Cluster Operators

etcd

&)
&)

Kube-proxy

&
&

2023

apiVersion: apps/vi

kind: Deployment

metadata:
name: nginx-deployment
labels:
app: nginx
spec:
replicas: 3
selector:
matchlLabels:
app: nginx
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:

- containerPort: 80

2023

Ingredient #2

infrastructure as code

What is it?
e Automate third party provisioning via applicable configurations

e It goes as follows:

Define your needs as config
Put them in a repository
Apply them via laC tool

27?7

Profit

o O O O O

e |aC tools talk to all platforms for you in a uniform way

2023

terraform
required_providers {

aws = {
source = "hashicorp/aws"
version = "~> 4.16"
b
b
required_version = ">= 1.2.0"
oo
grouping
provider |"aws" {
region = "us-west-2"
}

part of provider

resource ["aws_instance" "app_server" {

instance_type = "t2.micro"
tags = {
Name = "ExampleAppServerInstance”

2023

What makes it superior to us puny humans?

e Repeatability
e Consistency

e Transparency

2023

Observations on current laC tools

e Template approach
o Sequential / Synchronous provisioning
o Access depends on who executes it
o Modeling team boundaries - who owns what

e Monolithic state

o Drift management - keeping the state in sync with your config
o State lock

e Yet another language / tool

e Thus —Infrastructure-silo OpsPerson

2023

With this in mind...

state managements

Writ tors| collaborative

Infrastructure as code rite operators: .
.. : . I declarative
limitations and requirements

unified workflows extensible

R »

2023

We can create this
for infra concerns!

2023

modify

(Custom)

Resource

A

track events

Y

/N
Controller &/

adjust

5

_| managed by

| controller

Surprise announcement!

*J Crossplane

7, Crossplane

e Open source
e Control plane framework
e Built on top of Kubernetes (principles)

e [t actually doesn’t start with a K

2023

@ @ @,

| g
\\'l {
Q¥ AN
Q™|
o RN
s

2023

Crossplane provider strategy

2023

Providers are separately maintained
Open source

Can be shared via market place

Can be generated via Upjet

Still a lot of work to do

SHOWTIME

Core & providers

Crossplane resources

e Install new resources via providers
e Create recipes from managed resources
e XRDs build on the concept of CRDs

e Composition pattern

2023

2023

Human

has a

Dog

has a

Leg

walk()

Frog

has a

2023

Human

Dog

Eyes

see()

Frog

Leg

walk()

Not even trying
with an image
this time

A‘!’i
A' s

App Developers namespaced resource —————» AppSpace
m A
‘J ,
‘ global resource ~— AppSpace
Platform Engineer
KubernetesCluster Project
1 1 AN 1
GCPCluster _L . : u - : GCPProject u —
Nodepool NetworkingRule ProjectService

2023 XRD managed

Actually you are an

APl designer

Object / APl access depends on user group

A‘h
A' e

App Developers \

gy

App Operators

qn.
A' s

\
/

e

Master Node

N/

API Server

Worker Node

Kublet

Worker Node

Controllers

Kublet

Kube-proxy

Scheduler

Cluster Operators

etcd

&)
&)

Kube-proxy

&
&

2023

SHOWTIME

XRDs

How can this help us with

Overcoming limitations

S
- API -
A clear API - 11

e \Who loves YAML?? *crowd cheers*
e Talk to a well defined (Kubernetes) API

e Semantic versioning and a rollout strategy

2023

Continuous reconciliation

e Instead of synchronous provisioning
o The same as other K8s resources

e It replaces YOU (as reconciliation loop)

e Decouple and break monolithic representation
o Avoid configuration drift

e There always will be dependencies, model them correctly
o E.g.K8s labels

2023

Clear access control

e Third party access
o Providers / controllers handle access secret
o Multiple ProviderConfigs possible

e User access

o Via Kubernetes API
o RBAC all the way

2023

Concept of self-service

e EXxpose specific claims to groups of people
e Underlying resources with separate state are abstracted

e Provisioning without supervision / manual interference

2023

SHOWTIME

Apply ALL the things

Thank you for listening!

