
A closer look at Docker
BuildKit and Buildx .
CNCF Meetup Linz

01.

02.

03.

05.

06.

07.

Introduction

Docker Build

Buildx

Docker Build Cloud

BuildKit

Questions

2

©
 2

02
5

Pu
bl

ic
 C

lo
ud

 G
ro

up

Agenda.

04. Mounts

©
 2

02
4

Pu
bl

ic
 C

lo
ud

 G
ro

up

3

About Me

Sophia Zehethofer
sophia.zehethofer@pcg.io

hps://github.com/sophher/cncf-docker

● Software Engineering Master @ FH Hagenberg
● Software Engineer and Platform Engineer @ ENGEL Austria GmbH
● Cloud Consultant Azure @ Public Cloud Group GmbH

4

©
 2

02
4

Pu
bl

ic
 C

lo
ud

 G
ro

up

Goal of the Talk

● Containerized Angular App

● Lint, unit tests and build completely with Docker

● Hosted on Github

● Available on Github Codespaces

● Cloud only

● Fast and reproducible

5

©
 2

02
4

Pu
bl

ic
 C

lo
ud

 G
ro

up

Docker Build

● Build, Ship and Run Any App, Anywhere

● Dockerfile describes the container image
○ Base Image is picked with FROM
○ Application files are added with COPY
○ Installations and other commands can be executed with RUN
○ Arguments and environment variables can be defined with ARG and ENV

● Executed with the Docker Build CLI
○ docker build --file Dockerfile --tag app .

● Build context must be given
○ Folder, where docker gets its files from (most often “.”)
○ Files can be excluded with .dockerignore (hashes)

6

©
 2

02
4

Pu
bl

ic
 C

lo
ud

 G
ro

up

DEMO 1

Docker Build

- Angular demo app
- Local build, test and lint
- Container image build with Docker

7

©
 2

02
4

Pu
bl

ic
 C

lo
ud

 G
ro

up

Docker BuildKit

● New build Engine of the Docker CLI

● Standalone version available

● Default since Docker Engine v23.0

● In older versions available with
○ DOCKER_BUILDKIT=1 docker build .
○ /etc/docker/daemon.json

{
 "features": {
 "buildkit": true
 }
}

● Docker daemon must be running

● Runs a build container in the background

8

©
 2

02
4

Pu
bl

ic
 C

lo
ud

 G
ro

up

Multi-Stage Builds

● Multiple Stages
○ FROM <image/stage> AS <stage>

● Copy files from previous stage
○ COPY --from=<stage>

● Build stage can be targeted
○ docker build --target <stage>

● Dependency Tree
○ Enables build and download parallelization of images and stages

● Build Layer Cache
○ Each command (RUN, COPY, …) is cached in a layer
○ Disable the whole cache with --no-cache
○ Bust a cache layer and its dependents with an ARG CACHE_BUST and timestamp
○ docker build --build-arg CACHE_BUST=$(date +%s) .

9

©
 2

02
4

Pu
bl

ic
 C

lo
ud

 G
ro

up

Output Types

● Docker image (default)

● OCI image layout
○ docker buildx build --output type=oci,dest=<path/to/output> .
○ Outputs the image layers locally in a tarball

● Cacheonly
○ docker buildx build --output type=cacheonly .
○ No output
○ Useful for tests and deployments, that only have exit codes

● Local
○ docker buildx build --output type=local,dest=<path/to/output> .
○ Outputs the whole file system as folders and files
○ To pick files use FROM scratch with COPY --from

● Tar
○ Same as local, but the file system is compressed in a tarball
○ docker buildx build --output type=tar,dest=<path/to/output> .

10

©
 2

02
4

Pu
bl

ic
 C

lo
ud

 G
ro

up

Dependency Tree

nginxbrowsers

base

lint tester builder

test build

scratch

extends
copies from

base
image stage

target
stage

11

©
 2

02
4

Pu
bl

ic
 C

lo
ud

 G
ro

up

DEMO 2

BuildKit

- Lint
- Test
- Build

12

©
 2

02
4

Pu
bl

ic
 C

lo
ud

 G
ro

up

Bind Mounts

● Mount local folders into the build container

● Two options: read-only and read-write
○ RUN --mount=type=bind,source=.,target=/usr/src,ro
○ RUN --mount=type=bind,source=.,target=/usr/src,rw

● Scoped to a RUN command

● Not wrien to disk (!!!)
○ Changes are lost when the RUN block is finished
○ Files to extract must be copied to an unmounted destination

13

©
 2

02
4

Pu
bl

ic
 C

lo
ud

 G
ro

up

Cache Mounts

● Specify a folder, which is persistent for multiple builds or stages
○ RUN --mount=type=cache,id=pnpm,target=/root/.local/share/pnpm
○ When used in multiple RUN commands, use an id as the identifier

● Saved in the Docker cache, not in a local folder

● Clean with prune
○ docker builder prune --filter type=exec.cachemount

14

©
 2

02
4

Pu
bl

ic
 C

lo
ud

 G
ro

up

Secret Mounts

● Secret Mounts are not saved in a build layer

● Secret Environment Variable
○ RUN --mount=type=secret,id=kube
○ docker build --secret id=kube,env=KUBECONFIG .

● Secret File
○ RUN --mount=type=secret,id=aws
○ docker build --secret id=aws,src=$HOME/.aws/credentials .

● Secrets are mounted as files (both ENV and File)
○ /run/secrets/<id>

15

©
 2

02
4

Pu
bl

ic
 C

lo
ud

 G
ro

up

Devcontainer

● Development environment in a container

● Visual Studio Code connects remotely to this container

● Configured via commiable JSON file in the workspace
○ ./devcontainer/devcontainer.json

● Image or Dockerfile can be used as the dev environment
○ Target can be specified
○ The same stage as in the CI/CD system can be used

● Visual Studio Code extensions and seings are configurable

● Ports can be forwarded

● Post build steps are available
○ e.g. pnpm install

16

©
 2

02
4

Pu
bl

ic
 C

lo
ud

 G
ro

up

GitHub Codespaces

● Online Visual Studio Code for GitHub

● Executed on a Cloud Agent

● Capable of automatic Devcontainer boot

● Secure development agents, that can be audited

● Fast onboarding

17

©
 2

02
4

Pu
bl

ic
 C

lo
ud

 G
ro

up

DEMO 3

Mounts

- Bind Mount
- Cache Mount
- Devcontainer
- GitHub Codespaces

18

©
 2

02
4

Pu
bl

ic
 C

lo
ud

 G
ro

up

Docker Buildx

● Extended Capabilities for BuildKit

● Mostly experimental
○ Continuous integration in the default build CLI

● Multiple Platforms
○ docker buildx build --platform linux/amd64,linux/arm64 .
○ QUEMU support

● Local and Cloud Builders
○ Multiple builders for multiple platforms and parallelization

● Build multiple targets with bake
○ docker buildx bake
○ Bakefile
○ Hashicorp Configuration Language (HCL) possible
○ Variables and Functions
○ Target Definitions
○ Group Definitions

19

©
 2

02
4

Pu
bl

ic
 C

lo
ud

 G
ro

up

DEMO 4

Buildx

- Docker bake
- Local Builder

20

©
 2

02
4

Pu
bl

ic
 C

lo
ud

 G
ro

up

Docker Build Cloud

● Buildx Agents in the Cloud
○ Available for multiple platforms out of the box
○ High parallelization
○ No agent setup needed

● Docker Cache in the Cloud
○ CI agents and local clients can use the cache

● Tightly integrated in the Docker CLI
○ GUI Docker Desktop
○ CLI Plugin hps://github.com/docker/buildx-desktop (!!!)

https://github.com/docker/buildx-desktop

21

©
 2

02
4

Pu
bl

ic
 C

lo
ud

 G
ro

up

GitHub Actions

● CI/CD System for GitHub

● Actions for Docker Build Cloud are available
○ docker/login-action@v3
○ docker/setup-buildx-action@v3
○ docker/build-push-action@v6
○ docker/bake-action@v6

● Configurable with workspace yaml file
○ ./.github/workflows/<name>.yml

22

©
 2

02
4

Pu
bl

ic
 C

lo
ud

 G
ro

up

DEMO 5+6

Docker Build Cloud

- Docker Cloud build on dev system
- Docker Cloud build with GitHub Actions

23

©
 2

02
4

Pu
bl

ic
 C

lo
ud

 G
ro

up

Why build with Docker? - Pros

● Build Infrastructure as Code
○ Tools and versions are defined in the Dockerfile
○ Local and CI tooling are exactly the same
○ Pull Requests are easy when tool versions have to change
○ Builds are reproducible

● Build agent images can be kept minimal
○ Only Git and Docker must be installed
○ Can be run on dierent systems

● Caching can be leveraged for faster builds
○ Cloud caches for even more cache hits locally and on CI

● Fast onboarding
○ No local tool installation necessary
○ No version mismatches
○ No setup needed when using Codespaces + Devcontainer

24

©
 2

02
4

Pu
bl

ic
 C

lo
ud

 G
ro

up

Why not build with Docker? - Cons

● Verbosity and awkward workarounds
○ Output Types and FROM scratch
○ Cachebust
○ Mounts

● Monorepo build tools and Docker daemon
○ Docker in Docker
○ Daemonless (podman/buildah)

● CI/CD only easy with Docker Build Cloud
○ Build Agent Cleanup necessary (cache)
○ CPU and memory for Docker must be limited
○ Parallelization is diicult

● Dockerfile maintenance
○ Use Renovate or Dependabot

● Dockerfile duplications in multi-repos
○ No include statement
○ Base Image needed

25

©
 2

02
4

Pu
bl

ic
 C

lo
ud

 G
ro

up

Questions?

hps://github.com/sophher/cncf-docker

GET IN TOUCH WITH US

Let’s work
together.

With a product portfolio designed to accompany organizations of all

sizes in their cloud journey and competence that is a synonym for highly

qualified sta that customers and partners like to work with, PCG is

positioned as a reliable and trustworthy partner for the hyperscalers,

relevant and with repeatedly validated competence and credibility.

We have the highest partnership status with the three relevant

hyperscalers. As experienced providers, we advise our customers

independently.

Sophia Zehethofer
Cloud Consultant Azure
sophia.zehethofer@pcg.io

PUBLIC CLOUD GROUP GMBH
Peter-Behrens-Platz 10
 4020 Linz

VISIT OUR WEBSITE

http://pcg.io

