Beesting
Can't touch this

Image by mariya_m on pixabay

https://pixabay.com/photos/sunflower-flower-bee-insect-6545123/

Who am 1?

Software engineer turned Cloud Enthusiast
Kubernetes wizard

Linux Nerd 0

Eetmertakeounack io

AUgUst 2024

In this blog post

1. Better, faster application
protection and security
investigation

N

Step 1: Automating the
placement of honeytokens to
create strong indicators of
compromise

w

Step 2: Alerting with
automated context
enrichment

=

. Step 3: Auto-remediate with
network policies and GitOps

w

Bonus step: Deploying the
security policy into the live
cluster

o

. Workflows for security
incident response on the
Dynatrace platform

Context-aware security incident
response with Dynatrace
Automations and Tetragon

Published May 3, 2024 Updated December 12, 2024 11 min read

& Mario Kahlhofer g Simon Ammer 9 _ Markus Gierlinger

(Application security) (Engineering)

For the most severe threat scenarios, you want multiple layers of automated defenses,

Share blog post

and not have to rely on humans to analyze the traces of an attack weeks after your
system got compromised. Many security teams use runbooks to glue together tools,
processes, events, and actions for security incident response. A runbook lays out the step-

= f X in

by-step instructions to follow when a security incident happens, when an emerging
threat surfaces, or when your security tool reports suspicious behavior.

Stay Updated D
But runbooks that stitch together glamorous security tooling are merely decorations L)

without automated workflows for incident detection and response. Enter your email

The security community agrees on many high-level best practices in such situations, but

we need a single platform solution to orchestrate application security, observability, and & s

DevOps practices. Because every situation is a little unique, Dynatrace makes it easy to o u i
0g posts

create custom runbooks using Dynatrace Automations, fine-tuned to your individual

() Product news

business risks.

In this blog post, we'll demonstrate how to use Dynatrace Automations to build a runbook
that combats sophisticated security incidents with honeytokens and eBPF-based
detection. We show an end-to-end solution, starting with deploying policies in a
Kubernetes cluster and ending in a pull request assigned to the responsible team, all
without manual intervention.

To demonstrate the integration of external security tools into the Dynatrace platform, we
use Tetragon for eBPF-based security monitoring. Using Kyverno, we can automatically
kick attackers out of our cluster with network policies and harden our configuration with
a GitOps workflow to prevent the same incident from happening again.

Link to blog

https://www.dynatrace.com/news/blog/context-aware-security-incident-response/

(Kubernetes Cluster

Kyverno

injects
Honeytoken
file

=

Tetragon

watches
Honeytoken
file

v

MyAwesomeService -

informs
_ on ————>
incident

cluster owner

access ___——

Tokenfile

bad actor

(Pod)
J

Image by Freepik on Freepik

https://www.freepik.com/free-photo/close-up-honey-dripping-off-wooden-dipper-with-copy-space_6073844.htm#fromView=search&page=1&position=4&uuid=a963c1e3-765e-4800-98fc-b014e200ee61

Digital bait

This Is us

Image by freepik on Freepik

https://www.freepik.com/free-photo/side-view-male-hacker-with-laptop_8725474.htm#fromView=search&page=1&position=18&uuid=e4c7a153-84c8-4550-87fc-1e259fa8afb5

OPENSOURCE CMS

commerce:SEO

We are currently updating our CMS database. You will soon find further information
about commerce:SEO CMS on this page. We will provide you an overview with all
details about:

= latest changes and bug fixes
= updated or new plugins

= templates and themes

= developers news

webEdition

We are currently updating our CMS database. You will soon find further information
about webEdition CMS on this page. We will provide you an overview with all details
about:

= latest changes and bug fixes
= updated or new plugins

= templates and themes

= developers news

Cuppa CMS

We are currently updating our CMS database. You will soon find further information
about Cuppa €MS on this page. We will provide you an overview with all details
about:

= latest changes and bug fixes
= updated or new plugins

= templates and themes

= developers news

H.H.G. multistore

Search site ..

Do YOU WANT TO ADVERTISE
ON THIS SITE?

Contact us

CMS CATEGORIES
Blog (28)

Clan CMS (4)

CMF (1)

CMS / Portals (343)
CRM (1)

ECM (1)
eCommerce (22)
Farum (15)
Groupware (7)
Image Galleries (8)
Lite / Simple (11)
LMS / LCMS (5)
MVC (2)

Social Dating (1)
WAF (1)

wiki (4)

PopuLarR DEMoOs
WordPress Demo

Drupal Demo

MODx Demo

Typo3 Demo

Joomia Demo

concreteS Dema

New Demns

CVE-2022-41544

GetS|mp!e CMS v3.3.16 was dlscovered to contain a remote...

Unreviewed | Published on Oct 2022 to the GitHub Advisory Database - Updated on May 24, 2023

Package Affected versions Patched versions

No package listed— Suggest a package Unknown Unknown

Description

GetSimple CMS v3.3.16 was discovered to contain a remote code execution (RCE) vulnerability via the edited_file parameter in
adminftheme-edit.php.

References

Published by the National Vulnerability Database on Oct 18, 2022

Published to the GitHub Advisory Database on Oct 18, 2022

Last updated on May 24, 202

Severity
cal) 9.8/10

CVSS v3 base metrics

Aftack vector Network
Attack complexity Low
Privileges required MNone
User interaction None
Scope Unchanged
Confidentiality High
Integrity High
Availability High

CVSS:3.9/AVINJACL/PR:N/UEN/S:U/C:HfI:HAH

EPSS score
4.568% (92nd percentile)

Weaknesses

Source code

Mo known source code

$ root@simpecms—...:/root#

$ root@simpecms—...:/root# env
KUBERNETES_SERVICE_PORT_HTTPS=443
KUBERNETES_SERVICE_PORT=443
HOSTNAME=simpecms-6c4bfc97cd-wdnhv
PHP_VERSION=7.4.9
APACHE_CONFDIR=/etc/apache2
PHP_LDFLAGS=-W1,-01 —pie

PWD=/var/www/html

HOME=/root
KUBERNETES_PORT_443_TCP=tcp://10.96.0.1:443
TERM=xterm
PHP_URL=https://www.php.net/distributions/php-7.4.9.tar.xz

KUBERNETES_SERVICE_PORT_HTTPS=443
KUBERNETES_SERVICE_PORT=443

KUBERNETES_PORT_443_TCP=tcp://10.96.0.1:443

$ root@simpecms—...:/root# ls —-al /var/run/secrets/

$ root@simpecms—...:/root# ls —-al /var/run/secrets/
total 20

drwxr—=xr-—x
drwxr—=xr—x
drwxr—=xr-x
drwxr—=xr-—x

root
root
root
root

root 4096 Jan
root 4096 Jan
root 4096 Jan
root 4096 Jan

5 09:57 .

5 09:57 ..

5 09:57 eks.amazonaws.com
5 09:57 kubernetes.1io

drwxr-xr-=x 2 root root 4096 Jan 5 09:57 eks.amazonawsS.com

$ root@simpecms—...:/root# ls —-al /var/run/secrets/

total 20

drwxr-xr-x 4 root root 4096 Jan 5 09:57 .

drwxr=xr-x 1 root root 4096 Jan 5 09:57 ..

drwxr-xr-x 2 root root 4096 Jan 5 09:57 eks.amazonaws.com
drwxr-xr-x 3 root root 4096 Jan 5 09:57 kubernetes.1io

$ root@simpecms—...:/root# ls —-al /var/run/secrets/eks.amazonaws.com/

total 12

drwxr-xr-x 2 root root 4096 Jan 5 09:57 .

drwxr-xr-x 4 root root 4096 Jan 5 09:57 ..

—rw—-r——r— 1 root root 16 Jan 5 09:57 access_key_token

—rw—-r——r— 1 root root 16 Jan 5 09:57 access_key_token

$ root@simpecms—...:/root# cat /v/r/s/eks.amazonaws.com/access_key_token

3 sy
NN, | B

s T
JAMYiTRAP CARDD™

(«

ubernetes Cluster

Beesting
-\- watches
injects
Honeytoken Honi}l’ token
file e

\

N

MyAwesomeService

(Pod)

informs

A%E>

on
incident

access

Tokenfile

response team

attacker

5,

@) 5

o ey o ._ ally
Rl
i 4..... / I
k: .
' N
o A
3 i
. - t
o hin,]

o

e

VO

Yy

https://www.freepik.com/free-photo/aerial-view-container-cargo-ship-sea_13180315.htm#fromView=search&page=1&position=6&uuid=e5f2b7b3-d2d2-49b2-926e-eba339ed6a5b

Control Plane

[API Server J
[EtcD]
[Scheduler]

Data Plane
rNode 1
()
kubelet
_ J
-)
my-fancy-app
_ J
\
(Node 2

)
[kubelet
_J

[A
awesome-app

),
_

AN

J

Control Plane <

[API Server J
[EtcD]
[Scheduler]

Data Plane
rNode 1
()
kubelet
_ J
-)
my-fancy-app
_ J
\
(Node 2

)
[kubelet
_J

[A
awesome-app

),
_

AN

J

Control Plane

[API Server J
[EtcD]
[Scheduler]

Data Plane -

rNode 1
()
kubelet
_ _J
-)
my-fancy-app
_ y,
\
(Node 2

)
[kubelet
_J

[A
awesome-app

),
_

AN

J

Control Plane

[API Server J
[EtcD]
[Scheduler]

Data Plane

rNode 1
()

kubelet
_ _J
-)
my-fancy-app |

_ y,

\

(Node 2

)
[kubelet
_J

[awesome-appw -«
,
_

AN

J

Control Plane

APl Server

\

Data Plane

rNode 1

'checks
for
work

containerD

(Container Runtime)

request
start
container
(through CRI)

(kubelet J

my-fancy-app
("container")

)

starts
containers
through

runs

runC
(lowlevel runtime)

Control Plane

APl Server

\

Data Plane

rNode 1

'checks
for
work

containerD

(Container Runtime)

request
start
container
(through CRI)

(kubelet J<

my-fancy-app
("container")

)

starts
containers
through

runs

(runC

t(lowlevel runtime)

Control Plane

APl Server

\

Data Plane

rNode 1

'checks
for
work

containerD

(Container Runtime)

("container")

request
start
container
(through CRI)

(kubelet J

4‘ /[
Lmy-fancy-app

)

starts
containers
through

runs

runC
(lowlevel runtime)

Control Plane

APl Server

\

Data Plane

rNode 1

'checks
for
work

containerD

(Container Runtime)

request
start
container
(through CRI)

(kubelet J

starts
containers
through

my-fancy-app
("container")

)

runs

runC

-

(lowlevel runtime)

~

Cgroups
Limit resource usage (CPU, Memory)

Namespaces

Separate areas (Networking, Mounts)

Image by wayhomestudio on Freepik

https://www.freepik.com/free-photo/contemplative-female-looks-seriously-pensively-aside-purses-lips-concentrated-dressed-green-loose-jumper-makes-choice-mind_12930208.htm#fromView=search&page=7&position=29&uuid=f0298062-b6e1-429b-95cb-12126fe0161b

(«

ubernetes Cluster

Kyverno
injects
honeytoken
via volume
creates
in each
namespace
rd
r'd
mounts
rd
rd
L
honeytoken

(K8s Secret)

MyAwesomeService
(Pod)

=

—Creates

L

Solution from Dynatrace
blog post

developer

(«

ubernetes Cluster

Kyverno -
injects
honeytoken
via volume
creates
in each
namespace
rd
r'd
mounts
rd
rd
L
honeytoken

(K8s Secret)

MyAwesomeService
(Pod)

=

—Creates

L

Solution from Dynatrace
blog post

developer

(«

ubernetes Cluster

Kyverno
injects
honeytoken
via volume
creates
in each
namespace
rd
r'd
mounts
rd
rd
L
honeytoken

(K8s Secret)

MyAwesomeService
(Pod)

=

—Creates

L

Solution from Dynatrace
blog post

developer

apiVersion: vl
kind: Pod
metadata:
name: "myapp"
namespace: default
spec:
containers:
— name: myapp
image: "myapp: latest"
volumeMounts:
— name: honey-volume
readOnly: true
subPath: token
mountPath: /run/secrets/eks.amazonaws.com/s3_token
volumes:
— name: honeytoken
secret:
secretName: honeytoken

volumes:
— name: honeytoken

secret:
secretName: honeytoken

volumes:
— name: honeytoken
secret:
secretName: honeytoken

volumeMounts:
— name: honey-volume
readOnly: true
subPath: token
mountPath: /run/secrets/eks.amazonaws.com/s3_token

subPath: token
mountPath: /run/secrets/eks.amazonaws.com/s3_token

(K

ubernetes Cluster

Beesting Injector

creates
in each
namespace

honeytoken
(K8s Secret)

N\

\

injects
honeytoken
via volume

\

- _mounts" =~~~

a

Beesting Agent
(Daemon Set)

watches
file
access

i

MyAwesomeServcie
(Pod)

N

1

\informs

on

aCCGSS\

creates

developer

Problems

Problems

e Lot of moving parts

Problems

e Lot of moving parts

o Kubernetes specific

Boring

Control Plane

APl Server

\

Data Plane

rNode 1

'checks
for
work

containerD

(Container Runtime)

request
start
container
(through CRI)

(kubelet J

my-fancy-app
("container")

)

starts
containers
through

runs

runC
(lowlevel runtime)

Control Plane

APl Server

\

Data Plane

rNode 1

'checks
for
work

containerD

(Container Runtime)

request
start
container
(through CRI)

(kubelet J

)

K
my-fancy-app
("container")
starts
containers runs
through
runC

(lowlevel runtime)

5 { PLUGINS.md (&

Proview | Code Blama

containerd Plugins

containerd supparts extending its functionality using rmost of its defined interfaces. This includes wsing a customized runtime, snapshotter,
content store, and even adding gRPC interfaces.

Smart Client Model

containerd has a smart client architecture, meaning any functionaity which is not reguired by the daemen is done by tha client. This
includes most high level interactions such as creating a container's specification, interscting with an image registry, or loading an image
from tar. containerd's Go client gives a user secess to many points of extensions from creating their own opticns on container crestion to
resalving image registry names.

S conlar
External Plugins

External plugins allow extending centainerd®s functionality using an officially refeased version of containerd without needing fo recompile
the daemon to add & plugin.

containerd allows extensions through twao methods:
» \ia a binary available in containerd's PATH
* by configuring cantainerd te proxy te ancther gRPC service
V2 Runtimes
containerd supports multiple container runtimes. Each container can be invoked with a different runtime.

When using the Container Runtime Interface [CRI] plugin, named runtimes can be defined in the containerd configuration file. When a
container is run without specifying & runtime, the configured default runtime is used. Alternatively, a different named runtime can ba
specified explicitly when creating a container via CRI gRPC by selecting the runtime handler to be used.

‘When a cient such ag ctr or nerdctl creates a container, it can optionally specify a runtime and options to use. If a entime s not
specified, containerd will use its default runtime,

containerd invekes v2 runtimes as binarkes on the system, which are used to start the shim precess for containerd. This, in turn, allows
containerd to start and manage those containers using the runtime shim api returned by the binary.

For more details on runtimes and shims, including how to imvoke and configure theam, see the .

e Runtime

e Runtime

o Differ

e Runtime

o Differ

¢ and a few more

Differ Plugins

service Diff {

rpc Apply(ApplyRequest) returns (ApplyResponse);

rpc Diff(DiffRequest) returns (DiffResponse);
}

rpc Diff(DiffRequest) returns (DiffResponse);

message DiffRequest {
repeated containerd.types.Mount left
repeated containerd.types.Mount right
string media_type =

string ref = 4;
map<string, string> labels =
google.protobuf.Timestamp source_date_epoch = 6;

Node Resource
Interface

currently supported by:

Container Runtime * containerD
" CRI-O my-fancy-plugin
TP registers
\ / via

NRI
(Unix Socket)

type handlers struct {
Configure func(...) (api.EventMask, error)
Synchronize func(...) ([lxapi.ContainerUpdate, error)
Shutdown func(...
RunPodSandbox func(...) error
StopPodSandbox func(...) error
RemovePodSandbox func(...) error
CreateContainer func(...) (xapi.ContainerAdjustment, []*api.ContainerUpdate, error)
StartContainer func(...) error
UpdateContainer func(...) ([lxapi.ContainerUpdate, error)
StopContainer func(...) ([lxapi.ContainerUpdate, error)
RemoveContainer func(...) error
PostCreateContainer func(...) error
PostStartContainer func(...) error
PostUpdateContainer func(...) error

CreateContainer func(...) (xapi.ContainerAdjustment, []*api.ContainerUpdate, error)

type ContainerAdjustment struct {
Annotations map[string]lstring
Mounts [1Mount
Env [1xKeyValue
Hooks *Hooks

Linux *LinuxContainerAdjustment
Rlimits [1%POSIXRlimit
CDIDevices []xCDIDevice

Mounts [1xMount

Honeytokens = Files

ext?2, ext3, ext3
BTRFS

XFS

ZFS

and many more

Userspace o
application

Kernel syscall

II

[VFS]
my-fancy-fs
[ext4, btrfs, ... J L NFS J Lprocfs, sysfs J (tmpfs, devfs J ﬁKernel ModuleD
S I Voo N/
I |
! SSD, HDD, 1 memor
. [NAND. ...] (network J | Yy
\ |
_ /

Device drivers

WENCEECAICIOIIIROMN

Userspace o
application

Kernel syscall

II

[VFS]
my-fancy-fs
[ext4, btrfs, ... J L NFS J Lprocfs, sysfs J (tmpfs, devfs J ﬁKernel ModuleD
S I Voo N/
I |
! SSD, HDD, 1 memor
. [NAND. ...] (network J | Yy
\ |
_ /

Device drivers

Userspace o
application

Kernel syscall

II

y

[VFS]
my-fancy-fs
[ext4, btrfs, ... J L NFS J Lprocfs, sysfs J (tmpfs, devfs J ﬁKernel ModuleD
S I Voo N/
I |
! SSD, HDD, 1 memor
. [NAND. ...] (network J | Yy
\ |
_ /

Device drivers

https://www.freepik.com/free-photo/displeased-man-refusing-stretching-hand-grey-wall_8357236.htm#fromView=search&page=3&position=44&uuid=0d989872-e200-4027-a513-1dd4035a9a91

my-fancy-fs
Userspace
application
A
4 | \
Kernel !

syscall)

binds
functions

M

[VFS]
[ext4, btrfs, ...](NFS J Lprocfs, sysfs J(tmpfs, devfs J[FUSE]
S Voo N\

I |

[SSD, HDD, | memory

,‘ [NAND, ...] (network J X

\ I

N /

Device drivers

my-fancy-fs
Userspace
application
A
A
4 | \
Kernel !

syscall)

binds
functions

M

[VFS]
[ext4, btrfs, ...](NFS J Lprocfs, sysfs J(tmpfs, devfs J[FUSE]
S Voo N\

I |

[SSD, HDD, | memory

,‘ [NAND, ...] (network J X

\ I

N /

Device drivers

What about OCIl Hooks?

type Hook struct {
Path string
Args [Istring

Env [1string
Timeout *xOptionallnt

Path string

Args [Istring

[Istring

Timeout *xOptionallnt

type Hook struct {
Path string
Args [Istring

Env [1string
Timeout *xOptionallnt

type Hooks struct {
Prestart [1xHook
CreateRuntime [1xHook
CreateContainer []xHook

StartContainer []xHook
Poststart [1*xHook
Poststop [1xHook

CreateContainer []*Hook

B © vizo - | config.md

Preview Code Blame 1160 lines (1024 loc) -

& |CreateContainer Hooks

The createContainer hooks MUST be called as part of the operation after the runtime environment has been created (according
to the configuration in config.json) but before the pivot_root or any equivalent operation has been executed. The createContainer
hooks MUST be called after the createRuntime hooks.

The createContainer hooks' path MUST resolve in the . The createContainer hooks MUST be executed in the

For example, on Linux this would happen before the pivot_root operation is executed but after the mount namespace was created and
setup.

The definition of createContainer hooks is currently underspecified and hooks authors, should only expect from the runtime that the
mount namespace and different mounts will be setup. Other operations such as cgroups and SELinux/AppArmor labels might not have been
performed by the runtime.

StartContainer Hooks

The startContainer hooks MUST be called as part of the operation. This hook can
be used to execute some operations in the container, for example running the ldconfig binary on linux before the container process is
spawned.

The startContainer hooks'path MUST resolve in the . The startContainer hooks MUST be executed in the

Link to docs

https://github.com/opencontainers/runtime-spec/blob/v1.2.0/config.md#createContainer-hooks

For now just file injection

-

my-fancy-service (container) W

/run/secrets/eks.amazonaws.com/access_key_token
(file)

' containerD ’ ’?\
creates

' |

I

: L create OC| ;

| container—— Runtime - - -invokes- => | beesting-hook
! (runC) /\

exposes

|
| put beesting-hook somewhere accessible
! from the host (e.g. hostPath volume)
creates in an atomic file operation

\

|
|
registers ! : -
. . on CreateContainer inject
NRI < CreateContainer I CreateContainer OCI Look
hook

-

my-fancy-service (container) W

/run/secrets/eks.amazonaws.com/access_key_token

L (file)

containerD ’?\ /
' ' creates
L create

|

|

! ocCl = [beesting-hook
| .~ ——=| Runtime - = -invokes- = l eesting-hoo l
X container (runC) A

exposes

|
| put beesting-hook somewhere accessible
! from the host (e.g. hostPath volume)
creates in an atomic file operation

\

|
|
registers ! : -
. . on CreateContainer inject
NRI < CreateContainer I CreateContainer OCI Look
hook

-

my-fancy-service (container) W

/run/secrets/eks.amazonaws.com/access_key_token

L (file)
' containerD ’ ’?\
creates

' |

|

: L create OC| ;

| container——=>| Runtime |- - -invokes- => | beesting-hook
! (runC) /\

exposes

|
| put beesting-hook somewhere accessible
! from the host (e.g. hostPath volume)
creates in an atomic file operation

\

|
|
registers ! : -
. . on CreateContainer inject
NRI < CreateContainer I CreateContainer OCI Look
hook

-

my-fancy-service (container) W

/run/secrets/eks.amazonaws.com/access_key_token
(file)

' containerD ’ ’?\
creates

' |

I

: L create OC| ;

| container—— Runtime - - -invokes- => | beesting-hook
! (runC) /\

exposes

|
| put beesting-hook somewhere accessible
! from the host (e.g. hostPath volume)
creates in an atomic file operation

\

|
|
registers ! : -
. . on CreateContainer inject
NRI < CreateContainer I CreateContainer OCI Look
hook

-

my-fancy-service (container) W

/run/secrets/eks.amazonaws.com/access_key_token
(file)

' containerD ’ ’?\
creates

' |

I

: L create OC| ;

| container—— Runtime - - -invokes- => | beesting-hook
! (runC) /\

exposes

|
| put beesting-hook somewhere accessible
! from the host (e.g. hostPath volume)
creates in an atomic file operation

\

|
|
registers ! : -
. . on CreateContainer inject
NRI < CreateContainer I CreateContainer OCI Look
hook

-

my-fancy-service (container)

(file) mount /tmp/beesting

as hostPath volume

containerD ’?\ /
‘ ' creates
L create

/run/secrets/eks.amazonaws.com/access_key_token]

i
|
! OCl .
" container——=>| Runtime |- - -invokes- > [beestmg-hook]
| (runC)
exposes A

| put beesting-hook somewhere accessible
! from the host (e.g. hostPath volume)
creates in an atomic file operation

\

|
|
registers ' on CreateContainer inject
N < CreateContainer I CreateContainer OCI Look
hook

beesting-hook is embedded into
Beesting

$ skaffold run

Waiting for deployments to stabilize...
Deployments stabilized in 5.024708ms
You can also run [skaffold run ——tail] to get the logs

$ skaffold run

Waiting for deployments to stabilize...
Deployments stabilized in 5.024708ms
You can also run [skaffold run ——tail] to get the logs

$ k apply —f HACK/dummy.yaml
deployment.apps/dummy created

$ skaffold run

Waiting for deployments to stabilize...
Deployments stabilized in 5.024708ms
You can also run [skaffold run ——tail] to get the logs

$ k apply —-f HACK/dummy.yaml
deployment.apps/dummy created

$ k get pods

NAME READY STATUS RESTARTS AGE
beesting—agent—-q9s2d 1/1 Running 0 54s
dummy-8984df79-zpvnm 0/1 RunContainerError 2 (4s ago) 20s

$ k describe pod dummy-8984df79-zpvnm
Name: dummy-8984df79—-zpvnm
Namespace: default

Priority: 0

Service Account: default

Node:

Events:

Type

(x4 over 49s) kubelet

Warning Failed

beestinger-control-plane/172.18.0.3

Message

failed to create containerd
failed to create shim task: OCI
create failed: runc create
unable to start container
process: error during container init:
error running hook #1: fork/exec
/tmp/beesting/beesting-hook:

permission denied: unknown

Error:
task:
runtime
failed:

permission denied: unknown

Error: failed to create containerd task: failed to create shim task:
OCI runtime create failed: runc create failed: wunable to start container

process: error during container init: error running hook #1: fork/exec
/tmp/beesting/beesting—hook: permission denied: unknown

$ root@beestinger—-control-plane:/# mount

proc on /proc type proc (rw,nosuid,nodev,noexec,relatime)

tmpfs on /dev type tmpfs (rw,nosuid,size=65536k,mode=755, inode64)

devpts on /dev/pts type devpts (rw,nosuid,noexec,relatime,gid=5,mode=620,ptmxmode=666)
sysfs on /sys type sysfs (ro,nosuid,nodev,noexec,relatime)

mgueue on /dev/mqueue type mqueue (rw,nosuid,nodev,noexec,relatime)

shm on /dev/shm type tmpfs (rw,nosuid,nodev,noexec,relatime,size=65536k,inode64)

tmpfs on /tmp type tmpfs (rw,nosuid,nodev,noexec,relatime, inode64)

/dev/vdal on /var type ext4 (rw,relatime,discard,errors=remount-ro)

devpts on /dev/console type devpts (rw,nosuid,noexec,relatime,gid=5,mode=620,ptmxmode=666)
tmpfs on /run/lock type tmpfs (rw,nosuid,nodev,noexec,relatime,size=5120k,inode64)

tmpfs on /tmp type tmpfs (rw,nosuid,nodev,noexec, relatime, inode64)

By | © 1242 ~ | istio/cni/pkg all / install.go

v

Blame | 361 lines (331 loc) : 13.5 KB : ()

type Installer struct {

TUNL NEWLIISLALLET (LY FLUNT LY. LIS tdl LUl iy, I1SACdUy FdLUNLLC. Vdalug)] Fiiusitalier 1
return &Installer{
cfg: cfg, .
kubeconfigFilepath: filepath.Join(cfg.CNIAgentRunDir, constants.CNIPluginKubeconfName), /C)F)t/(:r1|/k)|r1
isReady: isReady,

func (in *Installer) installAll{ctx context.Context) (sets.String, error) {

// Install binaries

// Currently we _always_ do this, since the binaries do not live in a shared locatio

// and we harm no one by doing so.

copiedFiles, err := copyBinaries{in.cfg.CNIBinSourceDir, in.cfg.CNIBinTargetDirs})

if err != nil {
cniInstalls.With(resultLabel.Value(resultCopyBinariesFailure)).Increment()
return copiedFiles, fmt.Errorf("copy binaries: %v", err)

Write kubeconfig with our current service account token as the contents, to the Istio agent rundir.
We do not write this to the common/shared CNI config dir, because it's not CNI config, we do not
need to watch it, and writing non-shared stuff to that location creates churn for other node agents.
Only our plugin consumes this kubeconfig, and it resides in our owned rundir on the host node,
so we are good to simply write it out if our watched svcacct token changes
err := writeKubeConfigFile(in.cfg); err != nil {
cniInstalls.With(resultLabel.Value(resultCreateKubeConfigFailure)).Increment()
return copiedFiles, fmt.Errorf("write kubeconfig: %v", err)

Install CNI netdir config (if needed) - we write/update this in the shared node CNI netdir,
which may be watched by other CNIs, and so we don't want to trigger writes to this file
unless it's missing or the contents are not what we expect.
err := checkValidCNIConfig(in.cfg, in.cniConfigFilepath); err != nil {
installLog.Infof("configuration requires updates, (re)}writing CNI config file at %g: %v", in.cniConfigFilepath, err)

cni/pkg/install/install.go

https://github.com/istio/istio/blob/1.24.2/cni/pkg/install/install.go#L57-L64

-

my-fancy-service (container)

extracted to
/tmp/beesting

(file)

containerD ’?\ /
' ' creates
L create

/run/secrets/eks.amazonaws.com/access_key_token]

i
|
! OCl .
" container——=>| Runtime |- - -invokes- > [beestmg-hook]
| (runC)
exposes A

| put beesting-hook somewhere accessible
! from the host (e.g. hostPath volume)
creates in an atomic file operation

\

|
|
registers ' on CreateContainer inject
N < CreateContainer I CreateContainer OCI Look
hook

-

my-fancy-service (container)

extracted to
/opt/beesting/bin

(file)

containerD ’?\ /
' ' creates
L create

/run/secrets/eks.amazonaws.com/access_key_token]

i
|
! OCl .
" container——=>| Runtime |- - -invokes- > [beestmg-hook]
| (runC)
exposes A

| put beesting-hook somewhere accessible
! from the host (e.g. hostPath volume)
creates in an atomic file operation

\

|
|
registers ' on CreateContainer inject
N < CreateContainer I CreateContainer OCI Look
hook

$ skaffold run

Waiting for deployments to stabilize...
Deployments stabilized in 5.024708ms
You can also run [skaffold run ——tail] to get the logs

$ k delete —f HACK/dummy.yaml
deployment.apps/dummy deleted

$ k apply —-f HACK/dummy.yaml
deployment.apps/dummy created

$ k get pods

NAME READY STATUS RESTARTS AGE
beesting—agent—-q9s2d 1/1 Running 0 30s
dummy-8984df79-zpvnm 1/1 Running 0 52s

dummy-8984df79—-zpvnm 1/1 Running

$ k exec deploy/dummy —-it —— 1s —-alh /var/run/secrets/eks.amazonaws.com/
total 12K

drwxr—=xr-—x 2 root root 4.0K Jan 6 15:11 .

drwxr—=xr—x 4 root root 4.0K Jan 6 15:11 ..

—r—=r——r— 1 root root 16 Jan 6 15:11 access_key_token

oo much
complexity

Next try

Replace hook with bind mount

host-

1 file is accessible from both locations

_

root (mount namespace)

(/tmp/beesting/containeri-token]

~

~

f

/dev/sdai (disk)

\
\
\

bind mount

-

.

container-1 (mount namespace) \\]
\!

[/var/run/secrets/eks.amazon.com/access_token]

—>| inode 123

)

pZ

~

-

my-fancy-service (container) T

/run/secrets/eks.amazonaws.com/access_key_token
(file)

\ - /)

bind mounts

containerD

. [/tmp/beesting/container-1-token }
exposes

. A
1 |
1 |

: crealttes
Vi

1
registers ! S
— ~ .] _ on CreateContainer inject

into the container

-

my-fancy-service (container) T

/run/secrets/eks.amazonaws.com/access_key_token
(file)

\ - /)

bind mounts

containerD

[/ter/beesting/container-1-token }

L]
exposes

. A

1 |

1 |

| creates
}

\' .

registers ! S
— ~ .] _ on CreateContainer inject

into the container

-

my-fancy-service (container) T

/run/secrets/eks.amazonaws.com/access_key_token
(file)

\ : /)

bind mounts

containerD

[/tmp/beesting/container-1-token

L]
exposes

. A
1 |
1 |

: creelltes
Vi

1
registers ! S
— ~ .] _ on CreateContainer inject

into the container

-

my-fancy-service (container) T

/run/secrets/eks.amazonaws.com/access_key_token
(file)

\ - /)

bind mounts

containerD

. [/tmp/beesting/container-1-token }
exposes

. A
1 |
1 |

: crealttes
Vi

1
registers ! S
— ~ .] _ on CreateContainer inject

into the container

$ skaffold run

Waiting for deployments to stabilize...
Deployments stabilized in 5.024708ms
You can also run [skaffold run ——tail] to get the logs

$ k delete —f HACK/dummy.yaml
deployment.apps/dummy deleted

$ k apply —-f HACK/dummy.yaml
deployment.apps/dummy created

$ k get pods

NAME READY STATUS RESTARTS AGE
beesting—agent-x298w 1/1 Running 0 30s
dummy-8984df79-1isz1ls 1/1 Running 0 52s

dummy-8984df79-1isz1ls 1/1 Running

$ k exec deploy/dummy —-it —— 1s —-alh /var/run/secrets/eks.amazonaws.com/
total 12K

drwxr—=xr-—x 2 root root 4.0K Jan 6 16:51 .

drwxr—=xr—x 4 root root 4.0K Jan 6 16:51 ..

—r—r——r—— 1 root root 16 Jan 6 16:51 access_key_token

—r—=r——r— 1 root 16 Jan 6 16:51 access_key_token

How do we detect

File access?

https://www.freepik.com/free-photo/man-got-surprised-while-looking-through-magnifying-glass-saying-wow-awesome-product-standing_39673215.htm#fromView=search&page=2&position=31&uuid=b032d6d2-c816-43b2-93e1-81d01a4d49a8

'SOHOT RIGHT NOW

Traditional Kernel Development

OK! Just give me a year to convince
the entire community that thig is
good for everyone.

Application Developer: Hey kernel developer! Please add
this new feature to the Linux

i want this new feature

to observe my app

1year later... But | need this in 5 years later...
my Linux distro Good news. Our Linux
distribution now ships a
kernel with your required
feature

i'm done. The upstream
kernel now supports this.

OK but my requirements
have changed since...

eBPF Revolution

Application Developer: eBPF Developer:

OK! The kernel can't do this so let

i want this new feature . tdo
me quickly solve this with eBPF.

to observe my app

A couple of days later...

Here ig a release of our eBPF project that has this feature
now. BTW, you don't have to reboot your machine.

eBPF Comic by Philipp Meier and Thomas Graf

v

| Verifier ensures safety

I before program is loaded Native Machine
ByteCode : into the kernel Code

\

g Linux Kernel \'

Source Code ! :
I

|

: [eBPF VM] !

! |

. ~< I

iles t ! o

compiles to . JIT compiles to :

I runs S I

I

|

|

|

[

Unbounded Loops

UnboM_oops

Image by Freepik on Freepik

https://www.freepik.com/free-photo/close-up-woman-with-watch_21768055.htm#fromView=search&page=1&position=28&uuid=a87f4551-9928-476a-9f10-f078c92b901e

Linux

Kernel

[Process]

A

l Syscall]

[Process]

sendmsg() ‘ recvmsg()

Syscall
WeBPF
\ A

e Sockets

[
Maps @[{E’,BPF TCP/IP]
[

Network Device

Map Types

e HashTable, Arrays
e |LRU (Least Recently Used)

e Perf and Ring Buffer

Linux
Kernel

[Process }

sendmsg() ‘ Trecvmsg()

L Syscall

W eBPF
v |
[Sockets
[...] r
num = bpf get prandom u32(); Wespr _ TCP/IP)
[...] [Network Device |

Helpers

e bpf_get_current_pid_tgid
e bpf_map_lookup_elem

o bpf_map_delete_elem

What is a file?

Inode Number

also contains:
* FileType

* Permissions
* Owner

* Group

* Size

* Timestamp

- > 1

machine-1

Points to File Blocks on the disk

(i

/

. Inode Table

N\

— £

N
~

dev/sdal (FileSystem)

7

e
e

-~ File Blocks

~N

— Data
_ .
(N\

— Data
_ J
N

\[Data
.
)

Data
J

~

open
openat

symlinks

Image by wayhomestudio on Freepik

https://www.freepik.com/free-photo/frustrated-unhappy-man-cries-with-despair-expresses-negative-emotions-wears-sticky-notes-around-whole-body-head-poses-indoor-against-pink-wall-has-dejected-miserable-expression_13577814.htm#fromView=search&page=1&position=8&uuid=6e0e6875-60f9-49d9-930f-e418fd181715

Linux Security
Modules

Beesting doesn't use LSM directly

Userspace

my-fancy-service

open file
/tmpf/token
Kernel
open Beesting
(syscall) eBPF Program
/
/
/
opens check if K
file from process has attach
file system access ’

/
/

y

VFS security_fi!e_open
(function)

Userspace

> my-fancy-service

open file
/tmpf/token

Kernel V

open Beesting
(syscall) eBPF Program

/ N\

opens check if K
file from process has attach

file system access ’
/
/

y

VFS security_fi!e_open
(function)

Userspace

my-fancy-service

open file
/tmpf/token

Kernel V

> open Beesting
(syscall) eBPF Program

/ N\

opens check if K
file from process has attach

file system access ’
/
/

y

VFS security_fi!e_open
(function)

Userspace

my-fancy-service

open file
/tmpf/token

Kernel V

open Beesting
(syscall) eBPF Program

/ N\

opens check if K
file from process has attach

file system access ’
/
/

y

security_file_open
VFS] [(function) -

Userspace

my-fancy-service

open file
/tmpf/token
Kernel
open Beesting
(syscall) eBPF Program
/
/
/
opens check if K
file from process has attach
file system access ’

/
/

y

security_file_open
> VFS] [(function)

Userspace

my-fancy-service

open file
/tmpf/token

Kernel V

open Beesting
(syscall) eBPF Program

/ N\ h

opens check if K
file from process has attach

file system access ’
/
/

y

VFS security_fi!e_open
(function)

PoCv3 is based on PoCv2

containerD

exposes
|
|
I
|
\'

NRI

-

my-fancy-service (container)

~

/run/secrets/eks.amazonaws.com/access_key_token
(file)

\

)

bind mounts

monitors

access

[/tmp/beesting/container-1-token }

A

record inode num
creates Of the created file
1

hook security_file_open and see if a known
inode+device combo does come up

i I

__ registers. | , on CreateContainer inject

Ureat(;Colr(italner beesting Bind mount with honeytoken
00

into the container

containerD

exposes
|
|
I
|
\'

NRI

-

my-fancy-service (container) W

/run/secrets/eks.amazonaws.com/access_key_token
(file)

\

)

bind mounts
monitors
access

[/tmp/beesting/container-1-token }4——
A

record inode num
creates Of the created file
1

hook security_file_open and see if a known
inode+device combo does come up

i I

__ registers. | , on CreateContainer inject

Ureat(;Colr(italner beesting Bind mount with honeytoken
00

into the container

C STDOUT j

\

writes alert
to

N\
N\
N\
\

reads >

when event from ringbuf is read,
write alert with info such as PID,
pod, namespace to STDOUT

events

)

%when a token access has been

puts \
inodes I(\)ads g\t’s:t detected, push event to ringbuf
: N\
\
N\
files_to_watch . {\
(eBPF HashMap) &C_he%k if
inode
is token monitor_file_access

key = (inode num, device) (eBPF Program)
value = u8

values is unused, since hashmap
is used more like a set

[security_file_open J

C STDOUT j

\

writes alert
to

N\
N\
N\
\

reads >

when event from ringbuf is read,
write alert with info such as PID,
pod, namespace to STDOUT

events

)

%when a token access has been

puts \
inodes I(\)ad§ g\t’s:t detected, push event to ringbuf
N N
N
files_to_watch . {\
(eBPF HashMap) &C_he%k if
inode
is token monitor_file_access

key = (inode num, device) (eBPF Program)
value = u8

values is unused, since hashmap
is used more like a set

[security_file_open J

C STDOUT j

\

writes alert
to

N\
N\
N\
\

reads >

when event from ringbuf is read,
write alert with info such as PID,
pod, namespace to STDOUT

events

)

%when a token access has been

puts \
inodes I(\)ad§ g\t’s:t detected, push event to ringbuf
N N
N
files_to_watch . {\
(eBPF HashMap) &C_hecdk if
inode
is token monitor_file_access

key = (inode num, device) (eBPF Program)
value = u8

values is unused, since hashmap
is used more like a set

(security_file_open J

C STDOUT j
when event from ringbuf is read,

write alert with info such as PID,

writets alert pod, namespace to STDOUT
o

reads > events
\
/ t
\
N\

puts \ % when a token access has been

inodes I(\)ads g\t’s:t detected, push event to ringbuf
‘\
N
N
files_to_watch) {\
(eBPF HashMap) &C_he%k if
inode
is token monitor_file_access
key = (inode num, device) (eBPF Program)

value = u8

values is unused, since hashmap !
is used more like a set

[security_file_open J

C STDOUT j

\

writes alert
to

N\
N\
N\
\

reads >

when event from ringbuf is read,
write alert with info such as PID,
pod, namespace to STDOUT

events

)

%when a token access has been

puts \
inodes I(\)ad§ g\t’s:t detected, push event to ringbuf
N N
N
files_to_watch . {\
(eBPF HashMap) &C_he%k if
inode
is token monitor_file_access

key = (inode num, device) (eBPF Program)
value = u8

values is unused, since hashmap
is used more like a set

[security_file_open J<

$ skaffold run

Waiting for deployments to stabilize...
Deployments stabilized in 5.103810ms
You can also run [skaffold run ——tail] to get the logs

$ k delete —f HACK/dummy.yaml
deployment.apps/dummy deleted

$ k apply —-f HACK/dummy.yaml
deployment.apps/dummy created

$ k get pods

NAME READY STATUS RESTARTS
beesting—agent-svpzl 1/1 Running @
dummy-8984df79-kddjh 1/1 Running 0

dummy-8984df79-kddjh 1/1 Running

$ k exec deploy/dummy —— 1ls —-alh /var/run/secrets/eks.amazonaws.com/

total 12K

drwxr—-xr—x 2 root
drwxr—-xr—x 4 root
—rw—r——r—-— 1 root

root
root
root

4.0K Jan 11 09:14 .
4.0K Jan 11 09:14 ..
16 Jan 11 09:14 access_key_token

—rw—r——r—— 1 root 16 Jan 11 09:14 access_key_token

$ k exec deploy/dummy —— 1ls —-alh /var/run/secrets/eks.amazonaws.com/
total 12K

drwxr—-xr—x 2 root root 4.0K Jan 11 09:14 .

drwxr—-xr—x 4 root root 4.0K Jan 11 09:14 ..

—rw—r——r—-— 1 root root 16 Jan 11 09:14 access_key_token

$ k exec deploy/dummy —— cat /var/run/secrets/eks.amazonaws.com/access_key_token
2yWeFNuHzb7wUw==

$ k exec deploy/dummy —— 1ls —-alh /var/run/secrets/eks.amazonaws.com/
total 12K

drwxr—-xr—x 2 root root 4.0K Jan 11 09:14 .

drwxr—-xr—x 4 root root 4.0K Jan 11 09:14 ..

—rw—r——r—-— 1 root root 16 Jan 11 09:14 access_key_token

$ k exec deploy/dummy —— cat /var/run/secrets/eks.amazonaws.com/access_key_token
2yWeFNuHzb7wUw==

$ k logs ds/beesting—agent —-tail=2
time=2025-01-11T09:14:37.455Z level=DEBUG msg="watch inode" token.Inode=92 token.Dev=78
2025-01-11T09:23:17Z * Honey Token Access Detected!

Pod: default/dummy-8984df79-kddjh

Container: dummy-pod,

PID: 379512,

StartTime: 584352740276296

Comm: cat

Further research

File injection based on PoCv1

beesting-hook
(OCI Hook)

A

sends inodes

to watch
<=

beesting-socket

(unix socket)
S——exposes

APl ——0_
[beesting]

monitoring is the same as PoCv3

beesting-hook
(OCI Hook)

—

sends inodes

to watch
<=

beesting-socket

(unix socket)
&GXPOSGS
APl ———__
[beesting]

monitoring is the same as PoCv3

Would survive node restart

How to secure it?

Further research

Hook read operations and scan for
pattern

Very flexible

https://github.com/patrickpichler/beesting/

https://github.com/patrickpichler/beesting/

https://patrickpichler.dev

https://patrickpichler.dev/

Patrick Pichler & Posts Talks Search Tags Archive

Home

Posts »

Figuring out which helpers are available in what kernel
version in eBPF

eBPF helpers are a vital part of any eBPF program. It is often not easy to figure out, which helper you

have available for a certain program type at a given Linux Kernel Version. The goal of this blog post is,...

MNovember 10, 2024 - 6 min - Patrick Pichler

Hello Blog

Hello world from patrickpichler.dev | am planning to write about different kubernetes/cloud/container

related topics. So stay tuned!

September 26, 2023 - 1 min - Patrick Pichler

