Deploy without
Disruption

Crafting Zero-Downtime
Experiences with Stateless
Services

About myself

e Jan Wiesbauer | 28 | Linz

e Software Engineer at Tractive
o Internal-Tooling team
o you build it - you own it

Deployments
@ Tractive

02

Deployment process -
Manufacturing System

a Jan Wiesbauer Jul 18th, 2023 at 2:22 PM
hey
can we do a TMS deployment today ~16:00?

3 replies

Warehouse agent Jul 18th, 2023 at 2:23 PM

sure é

m Jan Wiesbauer Jul 18th, 2023 at 3:56 PM
»e .
pls stop working.

i will start the deployment shortly.

&1 &

m Jan Wiesbauer Jul 18th, 2023 at 4:11 PM
up and running again.

ﬂ Jan Wiesbauer Jan 18th. 2023 at 10:41 AM
3

can we do a TMS deployment at 14:30?

P

Jan Wiesbauer Jan

5 :
i pls stop work

will deploy within the next minutes.

. Jan Wiesbauer Jan 18th, 2023

4 finished *

sry for the long interruption Q

a Jan Wiesbauer May 16th, 2
p hey

can we do a TMS deployment ~14:30?

o1

ﬂ Jan Wiesbauer May 14th, 2023 at 2:20 PM

b . ; :

i pls stop working. will begin the deployment shortly.
ok ok 2

=" Warehouse agent May 16th, 2023 at
K jawi can we continue to work?

a Jan Wiesbauer May 16th, 2023 at
G
v ah yeah sry @

up and running

Deployments i

from Uuser @ Something went wrong
perspective

Time constraints of deployments

e Manufacturing partners in Asia e
e Warehouse inlLinz -
e Deployments before EOB

e Manufacturing partners in Europe °

l
0.00 ' 1200 | 24.00

6.00 18.00

We need zero downtime...

e Users should not be disrupted by
deployment

e Devs should be able to deploy often
and on demand

We need zero downtime...
... and multiple instances

e Service should be highly available
e Service can be scaled horizontally

Solution

Adapt Deployment strategy

e “Recreate”
e Change to “Rolling update”

=

Instance A Instance B 1

Sounds simple
right...?

1ERO
IDOWNTIME
P WDEPLOYMENTS

But our service is stateful...

e Some state in process memory
e Candiverge

o — Inconsistencies

o — hondeterministic results

04

Turning service
stateless

AWS Elastic Container Service
)

REST

O REST _ .
» Spring Boot service |+ ~ Vi P >

A /\j (Rabbitia

A 4

Y

External services
MySQL MongoDB

Stateful aspects of our service

e User sessions
e Caching
e Locks

User sessions - Problem

e Sessions are stored in process memory
e Subsequent calls to different instances fail

| |

l ey
=N

Instance Instance B

User sessions - Solutions

e Sync sessions across instances
e Sticky sessions on infrastructure layer
e JWT tokens

User sessions - Decision

e Sync sessions across instances

e Stored in Redis
e Pros:

o Sessions still exist after deployment
o Adaptations closer to service
o Strict control over access

User sessions - Implementation

runtimeOnly ("org.springframework.session:spring-session—-data-redis"

spring:

session:

store-type: redis
data:
redis:
host:

password:

port:

User sessions - Conclusion

e Straightforward implementation

e No noticeable performance drawback

e One of the most visible changes for
users

= Amazon Elastic Container Service

Refurbishment Batch # 67

Edit Refurbishment Batch

Descrition Created i

Model Number Created at
TG5 2025-01-08T0¢

stage-eu-central-1-tms-service-ec2-service-v1 i
/@ (/\ Update service I V> C Delete service \

Last (ted

28 April 2025 at 15:06 (UTC+2:00)

Service overview info

Status Tasks (1 Desired) Task definition: Deployment
QF. revision status

N S stage-eu-central-1
Hardware Edition Last updated at 0 pending | ==

.) tms-service-ec2
BROWN-TEXTURE-WORLDWIDE ==

task-family-v1:86

Associated Devices Health and metrics Tasks Logs Deployments Events Configurati >

Q, Filter Tasks (1/1)

Device ID Masterbox ID Innerbox ID added at Tracking Information Q. Filter tasks by property or value
tLE S J ropercty value

No d S iated with this refurbish t batch. z A .
e AR R R TR anINe . 2810 Filter desired status Filter launch type

Items per page 10 Any desired status Any launch type v @

Task v Laststatus ¥ | Desired status Vv | Health status ¥ | Started at

[O [0 9b673... @) Running ®& Running 21 41 minutes ago

Caching - Problems

e Data cached in process memory

e Candiverge

e Instances work on different “versions”
of the data

Caching - Solution

e Distributed cache

e Stored in Redis
e Also keep some in memory caches

o “Cold” or immutable data

Caching - Implementation

@Service
class ShipmentCreationService (
private val cache: Cache,

) A
val alreadySyncedOrderIds by cache {

fetchAlreadySyncedOrderIds ()

}

@Qualifier

annotation class InMemoryCache
@Qualifier

annotation class RemoteCacheManager

@Service

class ServiceA (
@InMemoryCache
val inMemoryCache: Cache,

@Service
class ServiceB (
@RemoteCache
private val remoteCache: Cache,

Caching - Conclusion

Required some configuration code

o But simple to use and replace

Large objects can take long to retrieve
Highly frequently accessed data can
decrease performance

Backwards compatibility

Locks - Motivation

e Prevent that aresource is processed

concurrently
o Shipment packing at Warehouse

e Or specific logic/service is executed

concurrently

Locks - Problems

e Locks are stored in process memory
e Other instances would not know about
e Whole point of locks is lost

Locks - Solution

e Sync Locks across instances
e Stored in Redis

Locks - Implementation

fun <T> withRedissonLock (
lockKey: String,
action: -> T,

redissonClient.getFairLock (lockKey) . run {

try
lock ()
return action ()
finally
unlock ()

Locks - Implementation

fun <T> withRedissonlLockIfAvailableOrThrow (
lockKey: String,
action: -> T,

redissonClient.getFairLock (lockKey) .run {
try
val lockAcquired = tryLock()

1f (lockAcquired)
return action
else
throw LockNotAcquiredException (lockKey

finally

Locks - Implementation

interface LockService {
fun <T> runWithLock (lockKey: String, action:
Result<T>

fun <T> runIfKeyNotLocked(lockKey: String, action:
Result<T>

fun extendObjectLock (objectId: ObjectlId, pattern: String)

fun getLockedObjectlIds (pattern: String): Set<ObjectId>

Locks - Implementation

fun createShipmentsForRequestsWithoutErrorsInBulk () =
createShipmentsInBulklLockService.withServicelock {
val pendingShipmentRequestsWithoutErrors =
findOpenShipmentRequests ()
.filter it.errors.isEmpty ()

createShipmentsInBulk (pendingShipmentRequestsWithoutErrors)

Locks - Implementation

fun findPendingShipments () : List<ShipmentDto>
val lockedShipmentIds =
shipmentLockService.getLockedObjectIds (SHIPMENT LOCK PATTERN)

return shipmentRepository
.findAllByStatus (ShipmentStatus. PENDING)
.filter { shipment -> shipment.id !'in lockedShipmentIds }

Locks - Conclusion

e Required more custom implementation
e You should only lock keys and not objects
e No noticeable performance drawback

05

Additional topics to
consider

Additional topics

e Scheduled jobs

e REST communication

e AMQP messaging

e Backwards compatibility
e Graceful shutdown

Scheduled jobs

e Batch jobs processing large sets of data
e Concurrent executions — could cause
inconsistencies

Scheduled jobs - Solution

e Locking the jobs
e Stored in MongoDB using “ShedLock”'

1 https://github.com/lukas-krecan/ShedLock

Scheduled jobs - Implementation

implementation (

runtimeOnly (

@Bean

fun mongoSchedulerLockProvider (mongoTemplate: MongoTemplate) :LockProvider
return MongoLockProvider (mongoTemplate. db)

@Scheduled (fixedDelay = timeUnit = TimeUnit.MINUTES)
@SchedulerlLock (name = , lockAtMostFor =
public void syncOrders ()

Scheduled jobs - Implementation

Example

{
"_id" :
"lockUntil":
"Sdate":

14
"lockedAt":
"Sdate":

4
"lockedBy":

Scheduled jobs - Conclusion

e Straightforward implementation
e Job lock can be used to suspend jobs
e Config needs proper setup and
monitoring
o lockAtMostFor

45

REST Load balancing [routing

e Single entry point for users
e Load Balancer
o capadble of routing traffic to
different instances

AMQP messaging models

e Publisher/Subscribe vs.
Producer/Consumer

e Message delivery to one or all
instances?

Backwards compatibility

e Rest APIs
e Persistence layer schema

Graceful shutdown

e Allow old services to finish ongoing
operations gracefully
e Reduces the risk of inconsistencies

Graceful shutdown -
Implementation

server:
shutdown:

lifecycle:
timeout-per-shutdown-phase: 10m

Graceful shutdown - Flow

e ECS propagates shutdown signal to
containers

e Spring service receives and initiates
shutdown

e ECS will wait until service reports
successful shutdown

Testing

Testing

e Simulate traffic throughout deployment
e With load testing tool “vegeta”’

I https://github.com/tsenart/vegeta

Testing - Usage

"GET https://example.com" \

Requests
Duration
Latenciles
Bytes In
Bytes Out
success

Status Codes

Frror Set:

attack -rate=5/s
report

total,
total,

rate,

[

[

[min,
[total,
[

[

[

mean,
mean |
mean |

total,
ratio]
code:count]

—duration=10s \

throughput]
attack,
max |

walt]

50, 5.10, 5.05
9.903s, 9.801s,
96.819ms,
840913,
0, 0.00
80.00%
200:40,

102.142ms
108.504ms, 313.981ms
16818.26

503:10

~

echo "GET $URL" \
| vegeta attack \
-rate=2/s \
-duration=300s \

-header "Authorization: Bearer $API_TOKEN" \

| vegeta report

N

= Amazon Elastic Container Service

stage-eu-central-1-tms-service-ec2-service-v1 i

't @) (Update service iv) (Delete service)

Service overview info

Status Tasks (1 Desired)

).

0 pending |

I

Health and metrics Tasks Logs

Tasks (1/1)

Q, Filter tasks by property or value

Task definition: Deployment
revision status
stage-eu-central- @S
1-tms-service-ec2-

task-family-v1:86

Deployments Events Configur: >

Filter desired status Filter launch type

Any desired status

Any launch type &

Task v Last status ¥ | Desired status V | Health status ¥ Started at

[o IO d37ac...

® Running &) Healthy 7 minutes ago

https://docs.google.com/file/d/1RZ4FZoWxzIGPeJzEXCQ67GlG6UUHjBjk/preview

Positive impact

e No interruptions for users

e Deployments convenient for devs

e Shorter “Time-to-Production” of
features and fixes

e Fewer inconsistencies and errors

Negative impact

e Required backwards compatibility
complicates implementations
e Infrastructure costs

Outlook

Outlook

e Extend approach to other internal services
e Split up “API-Service” and “Job-Runner”

o individual deployment strategies

o individual resources & scaling

Deploy Without
Disruption

Crafting Zero-Downtime
Experiences with Stateless
Services

. . o \0\ ”.l‘\
.2 ..t g - —
R3S : P T 4 -, -
e - ./.u o .
. % - -
< - 5 , '%ﬁa‘.‘» g e L
. q Vi
R g .,.m”:cw. < : -
.n“. " c " . \‘\l.t.ln‘u !
- . o T
v "~ = AT
: -.f X : . B - ﬁ
G
. Q N
L.

. -

Now it's the perfect
time to raise your hand

e ne ke T
it
R A >
) -MW’UA
et N
\. -

on i

and ask a quest
you have one.

